If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=63=30x
We move all terms to the left:
3x^2-(63)=0
a = 3; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·3·(-63)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{21}}{2*3}=\frac{0-6\sqrt{21}}{6} =-\frac{6\sqrt{21}}{6} =-\sqrt{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{21}}{2*3}=\frac{0+6\sqrt{21}}{6} =\frac{6\sqrt{21}}{6} =\sqrt{21} $
| 8|7x+6|=24 | | 14x+9=5x | | 3/5+(-1/10)=x+11/2 | | 2^x+1+2^x+2+2^x=7*2^3-x | | 3|x+4|=18 | | 2(x-5)-6x=-6 | | 10x-9+12x=-2x-2+8 | | 2/3x=9.16 | | 3|8x+7=13 | | 2p+6p=9-p | | 2^2x×4^x+1=16 | | z+1=17 | | 3/14+1/20x-5/16=x | | 8-3(x+4)=2×+1 | | 6x-3(-4x-6)=126 | | c=39.03+0.50 | | 20+15*y=140 | | a/3+1=12 | | 5x+19=7x-15 | | y^2-11y-4.25=0 | | |x-2|+2=3 | | 3h=7(0.285714285-0.428571428h)-10 | | 6x-13x+4=-2x+7 | | -16.9-x=13.2 | | -11+4k=1+5k+5k | | 4r2-96=8r | | 3(-3+5)+2x-3= | | -3x+4(2x+11)=14 | | 41.87x-400=18.39x-200 | | 5x+19=7x-19 | | y/9+4=-19 | | X/(x-4)=0.985 |